Machine learning treasury yields
Year of publication: |
2020
|
---|---|
Authors: | Kakushadze, Zura ; Yu, Willie |
Published in: |
Bulletin of applied economics. - Christchurch, New Zealand : Scientific Press International Limited, ISSN 2056-3728, ZDB-ID 2818826-3. - Vol. 7.2020, 1, p. 1-65
|
Subject: | non-negative matrix factorization | NMF | clustering | k-means | Treasury | yield | machine learning | maturity | time series | out-of-sample | in-sample | weight | factor | exposure | source code | principal component | correlation | forecasting | interest rate | stability | level | slope | steepness | curvature | fixed income | term structure | yield curve | Zinsstruktur | Yield curve | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Staatspapier | Government securities | Zeitreihenanalyse | Time series analysis | Kapitaleinkommen | Capital income | Rendite | Yield | Korrelation | Correlation | Anleihe | Bond | Öffentliche Anleihe | Public bond | Zins | Interest rate |
-
A model of bond value : explaining yields with growth and inflation
Shevlin, Thomas, (2019)
-
Modeling and forecasting the co-movement of international yield curve drivers
Sprincenatu, Maria, (2019)
-
International capital flows and yields of public debt bonds
Leon, Márcia Saraiva, (2014)
- More ...
-
Mutation Clusters from Cancer Exome
Kakushadze, Zura, (2017)
-
*K-Means and Cluster Models for Cancer Signatures
Kakushadze, Zura, (2017)
-
How to Combine a Billion Alphas
Kakushadze, Zura, (2016)
- More ...