Managing extreme cryptocurrency volatility in algorithmic trading : EGARCH via genetic algorithms and neural networks
Year of publication: |
2024
|
---|---|
Authors: | Alaminos, David ; Salas, M. Belén ; Callejón-Gil, Ángela M. |
Published in: |
Quantitative finance and economics. - [Springfield, Mo.] : AIMS Press, ISSN 2573-0134, ZDB-ID 2937262-8. - Vol. 8.2024, 1, p. 153-209
|
Subject: | emerging cryptocurrencies | EGARCH | genetic algorithms | neural networks | algorithmic trading | quantum computing | deep learning | Neuronale Netze | Neural networks | Evolutionärer Algorithmus | Evolutionary algorithm | Virtuelle Währung | Virtual currency | Volatilität | Volatility | Elektronisches Handelssystem | Electronic trading | Algorithmus | Algorithm | Wertpapierhandel | Securities trading | Künstliche Intelligenz | Artificial intelligence | ARCH-Modell | ARCH model | Theorie | Theory |
-
Kryńska, Katarzyna, (2022)
-
Artificial intelligence in asset management
Bartram, Söhnke M., (2020)
-
Developing an Artificial Neural Network Algorithmic Trading System
Joshi, Jerome, (2021)
- More ...
-
Neural networks for estimating macro asset pricing model in football clubs
Alaminos, David, (2023)
-
Quantum computing and deep learning methods for GDP growth forecasting
Alaminos, David, (2022)
-
Mapping the evolution of ethical standards in trading : a bibliometric analysis
Guillén-Pujadas, Miguel, (2024)
- More ...