Mapping the conceptual structure of innovation in artificial intelligence research : a bibliometric analysis and systematic literature review
Year of publication: |
2024
|
---|---|
Authors: | Obreja, Dragoș M. ; Rughiniș, Răzvan ; Rosner, Daniel |
Published in: |
Journal of innovation & knowledge : JIK. - Amsterdam : Elsevier, ISSN 2444-569X, ZDB-ID 2885454-8. - Vol. 9.2024, 1, Art.-No. 100465, p. 1-15
|
Subject: | Bibliometrics | AI innovation | Conceptual structure | Artificial intelligence | Big data | Bibliometrie | Künstliche Intelligenz | Innovation | Big Data |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1016/j.jik.2024.100465 [DOI] |
Classification: | A14 - Sociology of Economics ; O30 - Technological Change; Research and Development. General ; o35 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting innovative firms using web mining and deep learning
Kinne, Jan, (2019)
-
Yi, Lin, (2025)
-
Quantum computing for market research
Sáez-Ortuño, Laura, (2024)
- More ...
-
From social netizens to data citizens: variations of GDPR awareness in 28 European countries
Rughinis, Razvan, (2021)
- More ...