Mathematical model of golden rule in the form of differential positional game of many persons
Year of publication: |
September 2016
|
---|---|
Authors: | Zhukovskiy, Vladslav I. ; Topchishvili, Alexander L. |
Published in: |
International journal of operations and quantitative management : IJOQM. - Houston, Tex. : INFOMS, ISSN 1082-1910, ZDB-ID 1290624-4. - Vol. 22.2016, 3, p. 203-229
|
Subject: | Berge Equilibrium | Golden Rule | Nash Equilibrium | Saddle Point | Non-Cooperative Games | Strategy | Nash-Gleichgewicht | Nash equilibrium | Spieltheorie | Game theory | Nichtkooperatives Spiel | Noncooperative game | Gleichgewichtstheorie | Equilibrium theory | Optimales Wachstum | Optimal growth |
-
Corley, H. W., (2017)
-
A differentiable path-following method with a compact formulation to compute proper equilibria
Cao, Yiyin, (2024)
-
Chapter 41 Strategic equilibrium
Van Damme, Eric, (2002)
- More ...
-
Problem of multicurrency deposit diversification : three possible approaches to risk accounting
Zhukovskiy, Vladislav I., (2014)
-
The explicit form of Berge strong guaranteed equilibrium in linear-quadratic non-cooperative game
Zhukovskiy, Vladislav I., (2015)
- More ...