Maximum likelihood estimation by Monte Carlo simulation : toward data-driven stochastic modeling
Year of publication: |
2020
|
---|---|
Authors: | Peng, Yijie ; Fu, Michael ; Heidergott, Bernd ; Lam, Henry |
Published in: |
Operations research. - Catonsville, MD : INFORMS, ISSN 0030-364X, ZDB-ID 123389-0. - Vol. 68.2020, 6, p. 1896-1912
|
Subject: | simulation | sensitivity analysis | generalized likelihood ratio method | gradient-based MLE | Monte-Carlo-Simulation | Monte Carlo simulation | Simulation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory | Sensitivitätsanalyse | Sensitivity analysis | Stochastischer Prozess | Stochastic process |
-
Variable selection in regression models using global sensitivity analysis
Becker, William, (2021)
-
Gür, Sercan, (2019)
-
On estimating quantile sensitivities via infinitesimal perturbation analysis
Jiang, Guangxin, (2015)
- More ...
-
A new likelihood ratio method for training artificial neural networks
Peng, Yijie, (2022)
-
Peng, Yijie, (2018)
-
Efficient learning for clustering and optimizing context-dependent designs
Li, Haidong, (2024)
- More ...