Measuring nonlinear Granger causality in mean
Year of publication: |
Apri 2018
|
---|---|
Authors: | Song, Xiaojun ; Taamouti, Abderrahim |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Alexandria, Va. : American Statistical Association, ISSN 0735-0015, ZDB-ID 876122-X. - Vol. 36.2018, 2, p. 321-333
|
Subject: | Bootstrap | Granger causality measures | Nonlinear causality in mean | Nonparametric estimation | Realized volatility | Risk premium | Time series | Variance risk premium | Kausalanalyse | Causality analysis | Risikoprämie | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Schätzung | Estimation | Nichtlineare Regression | Nonlinear regression | Prognoseverfahren | Forecasting model | Bootstrap-Verfahren | Bootstrap approach | Nichtparametrisches Verfahren | Nonparametric statistics | Schätztheorie | Estimation theory |
-
Nonlinear and time-varying risk premia
Ma, Chaoqun, (2020)
-
Nonparametric estimation and inference for conditional density based Granger causality measures
Taamouti, Abderrahim, (2014)
-
Nonparametric estimation and forecasting for time-varying coefficient realized volatility models
Chen, Xiangjin B., (2018)
- More ...
-
Measuring granger causality in quantiles
Song, Xiaojun, (2021)
-
Value-at-risk under measurement error
Doukali, Mohamed, (2024)
-
Testing for asymmetric comovements
Chuang, O-Chia, (2022)
- More ...