Measuring the Direction of Innovation : Frontier Tools in Unassisted Machine Learning
Year of publication: |
2020
|
---|---|
Authors: | Teodoridis, Florenta |
Other Persons: | Lu, Jino (contributor) ; Furman, Jeffrey L. (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Innovation | Technischer Fortschritt | Technological change |
Extent: | 1 Online-Ressource (44 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments May 8, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3596233 [DOI] |
Classification: | O30 - Technological Change; Research and Development. General ; O31 - Innovation and Invention: Processes and Incentives ; O33 - Technological Change: Choices and Consequences; Diffusion Processes ; O39 - Technological Change; Research and Development. Other |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Coccia, Mario, (2020)
-
Research Technology and the Rate and Direction of Innovation : A Taxonomy of Implications
Barbosu, Sandra, (2023)
-
Review of national policy initiatives in support of digital and AI-driven innovation
Paunov, Caroline, (2019)
- More ...
-
Mapping the Knowledge Space : Exploiting Unassisted Machine Learning Tools
Teodoridis, Florenta, (2022)
-
Furman, Jeffrey L., (2019)
-
Furman, Jeffrey L., (2020)
- More ...