Meta-Analysis of Rare Binary Adverse Event Data
We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse-event data. Special attention is paid to the case of rare adverse events that are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, a simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and the new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all, of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease.
Year of publication: |
2012
|
---|---|
Authors: | Bhaumik, Dulal K. ; Amatya, Anup ; Normand, Sharon-Lise T. ; Greenhouse, Joel ; Kaizar, Eloise ; Neelon, Brian ; Gibbons, Robert D. |
Published in: |
Journal of the American Statistical Association. - Taylor & Francis Journals, ISSN 0162-1459. - Vol. 107.2012, 498, p. 555-567
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Meta-Analysis of Rare Binary Adverse Event Data
Bhaumik, Dulal K., (2012)
-
An optimal test for variance components of multivariate mixed-effects linear models
Aryal, Subhash, (2014)
-
Sample Size Determination for Hierarchical Longitudinal Designs with Differential Attrition Rates
Roy, Anindya, (2007)
- More ...