Minimax estimators for a multinormal precision matrix
Let Sp-p ~ Wishart ([Sigma], k), [Sigma] unknown, k > p + 1. Minimax estimators of [Sigma]-1 are given for L1, an Empirical Bayes loss function; and L2, a standard loss function (Ri [reverse not equivalent] E(Li | [Sigma]), I = 1, 2). The estimators are , a, b >= 0, r(·) a functional on Rp(p+2)/2. Stein, Efron, and Morris studied the special cases and , for certain, a, b. From their work , a = k - p - 1, b = p2 + p - 2; whereas, we prove . The reversal is surprising because a.e. (for a particular L2). Assume (compact) [subset of] , the set of p - p p.s.d. matrices. A "divergence theorem" on functions Fp-p : --> implies identities for Ri, i = 1, 2. Then, conditions are given for , i = 1, 2. Most of our results concern estimators with r(S) = t(U)/tr(S), U = p |S|1/p/tr(S).
| Year of publication: |
1977
|
|---|---|
| Authors: | Haff, L. R. |
| Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 7.1977, 3, p. 374-385
|
| Publisher: |
Elsevier |
| Keywords: | Precision matrix Stokes' theorem minimax estimators quadratic loss |
Saved in:
Saved in favorites
Similar items by person
-
Haff, L. R., (1983)
-
A NOTE ON SIMULTANEOUS ESTIMATION OF PEARSON MODES
Haff, L. R., (1989)
-
Minimax estimators of the multinormal mean: Autoregressive priors
Haff, L. R., (1976)
- More ...