Minimum Variance Importance Sampling via Population Monte Carlo
Variance reduction has always been a central issue in Monte Carlo experiments.Population Monte Carlo can be used to this effect, in that a mixture of importancefunctions, called a D-kernel, can be iteratively optimised to achieve the minimumasymptotic variance for a function of interest among all possible mixtures. Theimplementation of this iterative scheme is illustrated for the computation of theprice of a European option in the Cox-Ingersoll-Ross model,
Year of publication: |
2005
|
---|---|
Authors: | Douc, Randal ; Guillin, Arnaud ; Marin, Jean-Michel ; Robert, Christian P, |
Institutions: | Centre de Recherche en Économie et Statistique (CREST), Groupe des Écoles Nationales d'Économie et Statistique (GENES) |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Convergence of Adaptive Sampling Schemes
Douc, Randal, (2004)
-
Convergence of adaptive sampling schemes
Douc, Randal, (2004)
-
Minimum variance importance sampling via population Monte Carlo
Douc, Randal, (2005)
- More ...