Mixture Latent Markov Modeling : Identifying and Predicting Unobserved Heterogeneity in Longitudinal Qualitative Status Change
There are many areas of organizational research where we may be concerned with subgroup differences in status change profiles. The purpose of this article is to illustrate, using a real data set on retirees' postretirement employment statuses (PES), how mixture latent Markov modeling may be applied to substantive research in organizational settings to identify population subgroups with varying status change profiles and examine their correlates, by modeling unobserved heterogeneity in longitudinal qualitative changes. Steps in the modeling process are highlighted and limitations, cautions, recommendations, and extensions of the technique are discussed
| Year of publication: |
2015
|
|---|---|
| Authors: | Wang, Mo |
| Other Persons: | Chan, David (contributor) |
| Publisher: |
[2015]: [S.l.] : SSRN |
| Subject: | Markov-Kette | Markov chain | Sozialer Status | Social status | Längsschnittanalyse | Longitudinal analysis | Organisationsforschung | Organizational research | Beschäftigungssystem | Employment system | Rentner | Pensioners |
Saved in:
| Extent: | 1 Online-Ressource (21 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | In: Organizational Research Methods, 2011, DOI: 10.1177/1094428109357107 Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 1, 2011 erstellt |
| Source: | ECONIS - Online Catalogue of the ZBW |
Persistent link: https://www.econbiz.de/10013019317