Mixtures of Global and Local Edgeworth Expansions and Their Applications
Edgeworth expansions which are local in one coordinate and global in the rest of the coordinates are obtained for sums of independent but not identically distributed random vectors. Expansions for conditional probabilities are deduced from these. Both lattice and continuous conditioning variables are considered. The results are then applied to derive Edgeworth expansions for bootstrap distributions, for Bayesian bootstrap distribution, and for the distributions of statistics based on samples from finite populations. This results in a unified theory of Edgeworth expansions for resampling procedures. The Bayesian bootstrap is shown to be second order correct for smooth positive "priors," whenever the third cumulant of the "prior" is equal to the third power of its standard deviation. Similar results are established for weighted bootstrap when the weights are constructed from random variables with a lattice distribution.
Year of publication: |
1996
|
---|---|
Authors: | Babu, Gutti Jogesh ; Bai, Z. D. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 59.1996, 2, p. 282-307
|
Publisher: |
Elsevier |
Keywords: | Asymptotic expansions Bayesian bootstrap bootstrap Chebyshev-Hermite polynomial Dirchlet distribution expansions for conditional distributions gamma distribution lattice distribution local limit theorems sampling without replacement weighted bootstrap |
Saved in:
Saved in favorites
Similar items by person
-
Edgeworth expansions for errors-in-variables models
Babu, Gutti Jogesh, (1992)
-
Edgeworth Expansions for Compound Poisson Processes and the Bootstrap
Babu, Gutti Jogesh, (2003)
-
Limit Processes with Independent Increments for the Ewens Sampling Formula
Babu, Gutti Jogesh, (2002)
- More ...