Modeling and predicting U.S. recessions using machine learning techniques
Year of publication: |
2021
|
---|---|
Authors: | Vrontos, Spyridon D. ; Galakis, John ; Vrontos, Ioannis D. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 37.2021, 2, p. 647-671
|
Subject: | Binary Probit/Logit | Classification and regression trees | Forecasting | Penalized likelihood models | Recession | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Konjunktur | Business cycle | USA | United States | Frühindikator | Leading indicator | Regressionsanalyse | Regression analysis | Schätztheorie | Estimation theory | Clusteranalyse | Cluster analysis |
-
Modern prediction methods : new perspectives on a common problem
Putka, Dan J., (2018)
-
Uncertainty and forecasts of U.S. recessions
Pierdzioch, Christian, (2020)
-
Bouri, Elie, (2024)
- More ...
-
Implied volatility directional forecasting : a machine learning approach
Vrontos, Spyridon D., (2021)
-
Forecasting GDP growth : the economic impact of COVID-19 pandemic
Vrontos, Ioannis D., (2024)
-
Vrontos, Ioannis D., (2024)
- More ...