Modeling Dynamic Heterogeneity using Gaussian Processes
Year of publication: |
2019
|
---|---|
Authors: | Dew, Ryan |
Other Persons: | Ansari, Asim (contributor) ; Li, Yang (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Theorie | Theory | Stochastischer Prozess | Stochastic process |
Description of contents: | Abstract [papers.ssrn.com] ; Abstract [doi.org] |
Extent: | 1 Online-Ressource |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Forthcoming, Journal of Marketing Research Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 16, 2019 erstellt Volltext nicht verfügbar |
Other identifiers: | 10.2139/ssrn.2915632 [DOI] |
Classification: | C01 - Econometrics ; C11 - Bayesian Analysis ; C14 - Semiparametric and Nonparametric Methods ; C23 - Models with Panel Data ; M37 - Advertising |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Malik, Sheheryar, (2011)
-
Flexible mixture-amount models for business and industry using Gaussian processes
Ruseckaite, Aiste, (2016)
-
An Efficient Exact Bayesian Method for the State Space Models with Stochastic Volatility
Huang, Yu-Fan, (2019)
- More ...
-
Modeling dynamic heterogeneity using gaussian processes
Dew, Ryan, (2020)
-
Dew, Ryan, (2021)
-
Bayesian nonparametric customer base analysis with model-based visualizations
Dew, Ryan, (2018)
- More ...