Modeling organizational performance with machine learning
Year of publication: |
2022
|
---|---|
Authors: | Pap, Jozsef ; Makó, Csaba ; Illessy, Miklos ; Kis, Norbert ; Mosavi, Amir |
Published in: |
Journal of open innovation : technology, market, and complexity. - Basel : MDPI, ISSN 2199-8531, ZDB-ID 2832108-X. - Vol. 8.2022, 4, Art.-No. 177, p. 1-19
|
Subject: | artificial intelligence | Bayesian additive regression trees | big data | deep learning | firm performance | machine learning | management | open innovation | organizational performance | social science | Künstliche Intelligenz | Artificial intelligence | Unternehmenserfolg | Firm performance | Big Data | Big data | Regressionsanalyse | Regression analysis | Lernende Organisation | Learning organization | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/joitmc8040177 [DOI] hdl:10419/274478 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Modeling organizational performance with machine learning
Pap, Jozsef, (2022)
-
Macroeconomic forecasting using factor models and machine learning : an application to Japan
Maehashi, Kohei, (2020)
-
Shocks to supply chain networks and firm dynamics : an application of double machine learning
Miyakawa, Daisuke, (2019)
- More ...
-
Modeling organizational performance with machine learning
Pap, Jozsef, (2022)
-
The concentric-circle model of FDI spillover effects : estimation using Hungarian panel data
Iwasaki, Ichirō, (2009)
-
Szanyi, Miklós, (2010)
- More ...