Modeling the yield curve of BRICS countries : parametric vs. machine learning techniques
Year of publication: |
2022
|
---|---|
Authors: | Castello, Oleksandr ; Resta, Marina |
Subject: | Artificial Neural Network (ANN) | BRICS | De Rezende-Ferreira model | emerging markets | Feed-Forward Neural Network (FFNN) | term structure | Zinsstruktur | Yield curve | BRICS-Staaten | BRICS countries | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Schwellenländer | Emerging economies | Prognoseverfahren | Forecasting model | Theorie | Theory | Schätzung | Estimation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks10020036 [DOI] hdl:10419/258347 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Learning forecast-efficient yield curve factor decompositions with neural networks
Kauffmann, Piero C., (2022)
-
Towards an early warning system for sovereign defaults leveraging on machine learning methodologies
Petropoulos, Anastasios, (2022)
-
Forecasting the term structure of crude oil futures prices with neural networks
Baruník, Jozef, (2015)
- More ...
-
Modeling the yield curve of BRICS countries: Parametric vs. machine learning techniques
Castello, Oleksandr, (2022)
-
On the fractal characterization of a system for tradings on Eurozone stocks
Resta, Marina, (2014)
-
Resta, Marina, (2016)
- More ...