Modelling cross-sectional tabular data using convolutional neural networks : prediction of corporate bankruptcy in Poland
| Year of publication: |
2021
|
|---|---|
| Authors: | Dzik-Walczak, Aneta ; Odziemczyk, Maciej |
| Published in: |
Central European economic journal. - Warsaw : Sciendo, ISSN 2543-6821, ZDB-ID 2977690-9. - Vol. 8.2021, 55, p. 352-377
|
| Subject: | convolutional neural networks | machine learning | simulation | bankruptcy prediction | financial indicators | Neuronale Netze | Neural networks | Insolvenz | Insolvency | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Polen | Poland | Simulation | Prognose | Forecast |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.2478/ceej-2021-0024 [DOI] hdl:10419/324552 [Handle] |
| Classification: | C45 - Neural Networks and Related Topics ; C02 - Mathematical Methods ; G33 - Bankruptcy; Liquidation |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Dzik-Walczak, Aneta, (2021)
-
Tänzer, Alina, (2024)
-
A deep learning approach to estimate forward default intensities
Divernois, Marc-Aurèle, (2020)
- More ...
-
Dzik-Walczak, Aneta, (2021)
-
Dzik-Walczak, Aneta, (2023)
-
Dzik-Walczak, Aneta, (2021)
- More ...