EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Mokken Scale Analysis for Dich...
  • More details
Cover Image

Mokken Scale Analysis for Dichotomous Items Using Marginal Models

Year of publication:
2008
Authors: Ark, L. ; Croon, Marcel ; Sijtsma, Klaas
Published in:
Psychometrika. - Springer. - Vol. 73.2008, 2, p. 183-208
Publisher: Springer
Subject: marginal models | Mokken scale analysis | scalability coefficients | test construction
Saved in:
  • More details
Extent:
text/html
Type of publication: Article
Source:
RePEc - Research Papers in Economics
Persistent link: https://www.econbiz.de/10005603351
    • EndNote
    • BibTeX
    • Zotero, Mendeley, RefWorks, ...
    • Text
Saved in favorites
    Similar items by subject
    • Dimensionality, Reliability and Validity of the InterRAI Depression Rating Scale in a Canadian Palliative Care Population

      Fisher, K., (2015)

    • An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables

      Ellis, Jules, (2014)

    • Nonparametric item response theory for investigating dimensionality of marketing scales: A SERVQUAL application

      Paas, Leonard, (2008)

    • More ...
    Similar items by person
    • Polytomous Latent Scales for the Investigation of the Ordering of Items

      Ligtvoet, Rudy, (2011)

    • Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis

      Straat, J., (2013)

    • Stochastic Ordering Of the Latent Trait by the Sum Score Under Various Polytomous IRT Models

      Ark, L., (2005)

    • More ...
    A service of the
    zbw
    • Sitemap
    • Plain language
    • Accessibility
    • Contact us
    • Imprint
    • Privacy

    Loading...