Monte carlo comparison of estimation methods for additive two-way tables
We considered the problem of estimating effects in the following linear model for data arranged in a two-way table: Response = Common effect + Row effect + Column effect + Residual. This work was occasioned by a project to analyse Federal Aviation Administration (FAA) data on daily temporal deviations from flight plans for commercial US flights, with rows and columns representing origin and destination airports, respectively. We conducted a large Monte Carlo study comparing the accuracy of three methods of estimation: classical least squares, median polish and least absolute deviations (LAD). The experiments included a wide spectrum of tables of different sizes and shapes, with different levels of non-linearity, noise variance, and percentages of empty cells and outliers. We based our comparison on the accuracy of the estimates and on computational speed. We identified factors that significantly affect accuracy and speed, and compared the methods based on their sensitivity to these factors. We concluded that there is no dominant method of estimation and identified conditions under which each method is most attractive.
Year of publication: |
2005
|
---|---|
Authors: | Yakovchuk, Natasha ; Willemain, Thomas |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 32.2005, 4, p. 351-374
|
Publisher: |
Taylor & Francis Journals |
Subject: | Additive model | least squares | least absolute deviations | Monte Carlo | robust estimation | two-way tables |
Saved in:
Saved in favorites
Similar items by subject
-
Kristensen, Johannes Tang, (2014)
-
Kristensen, Johannes Tang, (2012)
-
Leveraged least trimmed absolute deviations
Sudermann-Merx, Nathan, (2021)
- More ...