Monte Carlo fictitious play for finding pure Nash equilibria in identical interest games
| Year of publication: |
2024
|
|---|---|
| Authors: | Kiatsupaibul, Seksan ; Pedrielli, Giulia ; Ryan, Christopher Thomas ; Smith, Robert L. ; Zabinsky, Zelda B. |
| Published in: |
INFORMS journal on optimization. - Catonsville, Md. : INFORMS, ISSN 2575-1492, ZDB-ID 2957493-6. - Vol. 6.2024, 3/4, p. 155-172
|
| Subject: | equilibrium computation | fictitious play | game theory | game-theoretic learning algorithms | optimal equilibria | Spieltheorie | Game theory | Lernprozess | Learning process | Nash-Gleichgewicht | Nash equilibrium | Gleichgewichtstheorie | Equilibrium theory | Algorithmus | Algorithm |
-
Chapter 45 Computing equilibria for two-person games
Von Stengel, Bernhard, (2002)
-
Learning to coordinate : co-evolution and correlated equilibrium
Lee-Penagos, Alejandro, (2016)
-
Computation of equilibria and the price of anarchy in bottleneck congestion games
Werth, T. L., (2014)
- More ...
-
Single observation adaptive search for discrete and continuous stochastic optimization
Kiatsupaibul, Seksan, (2020)
-
Single observation adaptive search for continuous simulation optimization
Kiatsupaibul, Seksan, (2018)
-
An analytically derived cooling schedule for simulated annealing
Shen, Yanfang, (2007)
- More ...