Monte Carlo fictitious play for finding pure Nash equilibria in identical interest games
Year of publication: |
2024
|
---|---|
Authors: | Kiatsupaibul, Seksan ; Pedrielli, Giulia ; Ryan, Christopher Thomas ; Smith, Robert L. ; Zabinsky, Zelda B. |
Published in: |
INFORMS journal on optimization. - Catonsville, Md. : INFORMS, ISSN 2575-1492, ZDB-ID 2957493-6. - Vol. 6.2024, 3/4, p. 155-172
|
Subject: | equilibrium computation | fictitious play | game theory | game-theoretic learning algorithms | optimal equilibria | Spieltheorie | Game theory | Lernprozess | Learning process | Nash-Gleichgewicht | Nash equilibrium | Gleichgewichtstheorie | Equilibrium theory | Algorithmus | Algorithm |
-
Chapter 45 Computing equilibria for two-person games
Von Stengel, Bernhard, (2002)
-
Learning to coordinate : co-evolution and correlated equilibrium
Lee-Penagos, Alejandro, (2016)
-
Computation of equilibria and the price of anarchy in bottleneck congestion games
Werth, T. L., (2014)
- More ...
-
An analytically derived cooling schedule for simulated annealing
Shen, Yanfang, (2007)
-
Baumert, Stephen, (2009)
-
Pattern discrete and mixed Hit-and-Run for global optimization
Mete, Huseyin Onur, (2011)
- More ...