Multi-agent reinforcement learning for chiller system prediction and energy-saving optimization in semiconductor manufacturing
| Year of publication: |
2025
|
|---|---|
| Authors: | Lee, Chia-Yen ; Li, Yao-Wen ; Chang, Chih-Chun |
| Published in: |
International journal of production economics. - Amsterdam [u.a.] : Elsevier Science, ISSN 1873-7579, ZDB-ID 2020829-7. - Vol. 280.2025, Art.-No. 109488, p. 1-15
|
| Subject: | Chiller energy saving | Meta-prediction | Multi-agent reinforcement learning | Multi-setpoint controller | Semiconductor manufacturing | Energieeinsparung | Energy conservation | Agentenbasierte Modellierung | Agent-based modeling | Halbleiterindustrie | Semiconductor industry | Lernprozess | Learning process | Halbleiter | Semiconductor | Lernen | Learning | Simulation | Theorie | Theory |
-
Wang, Dahan, (2025)
-
Explainable reinforcement learning in production control of job shop manufacturing system
Kuhnle, Andreas, (2022)
-
Wafer fabrication yield learning and cost analysis based on in-line inspection
Tirkel, Israel, (2016)
- More ...
-
Proactive marginal productivity analysis for production shutdown decision by DEA
Lee, Chia-Yen, (2019)
-
Mixed-strategy Nash equilibrium in data envelopment analysis
Lee, Chia-Yen, (2018)
-
Directional marginal productivity : a foundation of meta-data envelopment analysis
Lee, Chia-Yen, (2017)
- More ...