Multilevel modelling of complex survey data
Multilevel modelling is sometimes used for data from complex surveys involving multistage sampling, unequal sampling probabilities and stratification. We consider generalized linear mixed models and particularly the case of dichotomous responses. A pseudolikelihood approach for accommodating inverse probability weights in multilevel models with an arbitrary number of levels is implemented by using adaptive quadrature. A sandwich estimator is used to obtain standard errors that account for stratification and clustering. When level 1 weights are used that vary between elementary units in clusters, the scaling of the weights becomes important. We point out that not only variance components but also regression coefficients can be severely biased when the response is dichotomous. The pseudolikelihood methodology is applied to complex survey data on reading proficiency from the American sample of the 'Program for international student assessment' 2000 study, using the Stata program gllamm which can estimate a wide range of multilevel and latent variable models. Performance of pseudo-maximum-likelihood with different methods for handling level 1 weights is investigated in a Monte Carlo experiment. Pseudo-maximum-likelihood estimators of (conditional) regression coefficients perform well for large cluster sizes but are biased for small cluster sizes. In contrast, estimators of marginal effects perform well in both situations. We conclude that caution must be exercised in pseudo-maximum-likelihood estimation for small cluster sizes when level 1 weights are used. Copyright 2006 Royal Statistical Society.
Year of publication: |
2006
|
---|---|
Authors: | Rabe-Hesketh, Sophia ; Skrondal, Anders |
Published in: |
Journal of the Royal Statistical Society Series A. - Royal Statistical Society - RSS, ISSN 0964-1998. - Vol. 169.2006, 4, p. 805-827
|
Publisher: |
Royal Statistical Society - RSS |
Saved in:
Saved in favorites
Similar items by person
-
Maximum likelihood estimation of generalized linear models with covariate measurement error
Rabe-Hesketh, Sophia, (2003)
-
Handling Correlations Between Covariates and Random Slopes in Multilevel Models
Bates, Michael David, (2014)
-
Composition, Context, and Endogeneity in School and Teacher Comparisons
Castellano, Katherine E., (2014)
- More ...