Multivariate dynamic information
This paper develops measures of information for multivariate distributions when their supports are truncated progressively. The focus is on the joint, marginal, and conditional entropies, and the mutual information for residual life distributions where the support is truncated at the current ages of the components of a system. The current ages of the components induce a joint dynamic into the residual life information measures. Our study of dynamic information measures includes several important bivariate and multivariate lifetime models. We derive entropy expressions for a few models, including Marshall-Olkin bivariate exponential. However, in general, study of the dynamics of residual information measures requires computational techniques or analytical results. A bivariate gamma example illustrates study of dynamic information via numerical integration. The analytical results facilitate studying other distributions. The results are on monotonicity of the residual entropy of a system and on transformations that preserve the monotonicity and the order of entropies between two systems. The results also include a new entropy characterization of the joint distribution of independent exponential random variables.
Year of publication: |
2007
|
---|---|
Authors: | Ebrahimi, Nader ; Kirmani, S.N.U.A. ; Soofi, Ehsan S. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 98.2007, 2, p. 328-349
|
Publisher: |
Elsevier |
Keywords: | Entropy Independence Kullback-Leibler information Mutual information Reliability Residual life |
Saved in:
Saved in favorites
Similar items by person
-
Predictability of operational processes over finite horizon
Ebrahimi, Nader, (2011)
-
A measure of discrimination between two residual life-time distributions and its applications
Ebrahimi, Nader, (1996)
-
Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures
Ardakani, Omid M., (2018)
- More ...