Multivariate dynamic mixed-frequency density pooling for financial forecasting
| Year of publication: |
2025
|
|---|---|
| Authors: | Virbickaitė, Audronė ; Lopes, Hedibert Freitas ; Zaharieva, Martina Danielova |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 41.2025, 3, p. 1184-1198
|
| Subject: | Realized volatility | Conditional value at risk | Density combination | Global minimum variance | High frequency | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Statistische Verteilung | Statistical distribution | Risikomaß | Risk measure | Theorie | Theory | ARCH-Modell | ARCH model | Wechselkurs | Exchange rate | Varianzanalyse | Analysis of variance | Portfolio-Management | Portfolio selection | Finanzmarkt | Financial market | Multivariate Analyse | Multivariate analysis | Zeitreihenanalyse | Time series analysis | Börsenkurs | Share price | Kapitaleinkommen | Capital income |
-
Dynamic copula models and high frequency data
De Lira Salvatierra, Irving Arturo, (2015)
-
Measuring asset market linkages : nonlinear dependence and tail risk
Escanciano, Juan Carlos, (2017)
-
Realizing the extremes : estimation of tail-risk measures from a high-frequency perspective
Bee, Marco, (2016)
- More ...
-
Particle learning for Bayesian semi-parametric stochastic volatility model
Virbickaitė, Audronė, (2019)
-
Intraday volatility transmission in global energy markets : a Bayesian nonparametric approach
Zaharieva, Martina Danielova, (2025)
-
A tutorial on the computation of bayes factors
Lopes, Hedibert Freitas, (2014)
- More ...