EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search
  • Noninformative priors for the...
  • More details
Cover Image

Noninformative priors for the two sample normal problem

Year of publication:
1996
Authors: Ghosh, M. ; Yang, M-Ch.
Published in:
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research. - Springer. - Vol. 5.1996, 1, p. 145-157
Publisher: Springer
Subject: Noninformative | Two Sample | Jeffreys Priors | Reference Priors | Probability Matching | Marginalization Paradox
Saved in:
  • More details
Extent:
text/html
Type of publication: Article
Source:
RePEc - Research Papers in Economics
Persistent link: https://www.econbiz.de/10005759555
    • EndNote
    • BibTeX
    • Zotero, Mendeley, RefWorks, ...
    • Text
Saved in favorites
    Similar items by subject
    • Intrinsic credible regions: An objective Bayesian approach to interval estimation

      Bernardo, José, (2005)

    • Noninformative priors for maximal invariant parameter in group models

      Datta, G., (1995)

    • A new nonparametric bivariate test for two sample location problem

      Mathur, Sunil, (2009)

    • More ...
    Similar items by person
    • INADMISSIBILITY OF THE BEST EQUIVARIANT ESTIMATORS OF THE VARIANCE-COVARIANCE MATRIX, THE PRECISION MATRIX, AND THE GENERALIZED VARIANCE UNDER ENTROPY LOSS

      Ghosh, M., (1987)

    • EMPIRICAL BAYES SUBSET ESTIMATION IN REGRESSION MODELS

      Ghosh, M., (1989)

    • A NEW CLASS OF IMPROVED ESTIMATORS OF A MULTINORMAL PRECISION MATRIX

      Dey, D. K., (1990)

    • More ...
    A service of the
    zbw
    • Sitemap
    • Plain language
    • Accessibility
    • Contact us
    • Imprint
    • Privacy

    Loading...