Nonparametric inference for distortion risk measures on tail regions
Year of publication: |
2019
|
---|---|
Authors: | Hou, Yanxi ; Wang, Xing |
Published in: |
Insurance / Mathematics & economics. - Amsterdam : Elsevier, ISSN 0167-6687, ZDB-ID 8864-X. - Vol. 89.2019, p. 92-110
|
Subject: | Copula | Distortion risk measure | Extreme Value Theory | Nonparametric method | Tail risk analysis | Risikomaß | Risk measure | Nichtparametrisches Verfahren | Nonparametric statistics | Ausreißer | Outliers | Statistische Verteilung | Statistical distribution | Messung | Measurement | Risiko | Risk | Schätztheorie | Estimation theory | Multivariate Verteilung | Multivariate distribution | Risikomanagement | Risk management | Induktive Statistik | Statistical inference | Portfolio-Management | Portfolio selection |
-
Statistical inference for a relative risk measure
He, Yi, (2019)
-
Tail dependence and heavy tailedness in extreme risks
Ji, Liuyan, (2021)
-
Estimation of the Haezendonck-Goovaerts risk measure for extreme risks
Zhao, Yanchun, (2021)
- More ...
-
Nonparametric inference for sensitivity of Haezendonck-Goovaerts risk measure
Wang, Xing, (2018)
-
Extreme Conditional Quantiles for Panel Data Model with Individual Effects
Hou, Yanxi, (2021)
-
Prediction of extremal expectile based on regression models with heteroscedastic extremes
Xu, Wen, (2022)
- More ...