A novel hybrid deep-learning framework for medium-term container throughput forecasting : an application to China's Guangzhou, Qingdao and Shanghai hub ports
| Year of publication: |
2024
|
|---|---|
| Authors: | Zhang, Di ; Li, Xinyuan ; Wan, Chengpeng ; Man, Jie |
| Published in: |
Maritime economics & logistics. - [London] : Palgrave Macmillan, ISSN 1479-294X, ZDB-ID 2047902-5. - Vol. 26.2024, 1, p. 44-73
|
| Subject: | Combined evaluation model | Gated cycle unit | Maritime logistics | Medium-term container throughput forecasting | Particle swarm optimization | Variational mode decomposition | VMD | China | Prognoseverfahren | Forecasting model | Containerterminal | Container terminal | Shanghai | Containerverkehr | Container transport | Lieferkette | Supply chain |
| Extent: | Illustrationen, Diagramme |
|---|---|
| Type of publication: | Article |
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Notes: | Literaturverzeichnis: Seite 70-73 |
| Other identifiers: | 10.1057/s41278-024-00284-2 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Xiao, Yi, (2025)
-
Using artificial neural networks to predict container flows between the major ports of Asia
Tsai, Feng-Ming, (2017)
-
Kulshrestha, Anurag, (2024)
- More ...
-
Wan, Chengpeng, (2024)
-
Wan, Chengpeng, (2022)
-
Analysis of risk factors influencing the safety of maritime container supply chains
Wan, Chengpeng, (2019)
- More ...