A novel machine learning model for predicting late supplier deliveries of low-volume-high-variety products with application in a German machinery industry
Year of publication: |
2023
|
---|---|
Authors: | Steinberg, Fabian ; Burggräf, Peter ; Wagner, Johannes ; Heinbach, Benjamin ; Saßmannshausen, Till Moritz ; Brintrup, Alexandra |
Published in: |
Supply chain analytics. - [Amsterdam] : Elsevier, ISSN 2949-8635, ZDB-ID 3180833-5. - Vol. 1.2023, Art.-No. 100003, p. 1-13
|
Subject: | Data analysis | Machine learning | Prediction methods | Regression analysis | Supervised Learning | Supply chain management | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Lieferkette | Supply chain | Lernprozess | Learning process | Deutschland | Germany | Regressionsanalyse | Maschinenbau | Machinery industry | Lieferantenmanagement | Supplier relationship management |
-
Trends and applications of machine learning in water supply networks management
Robles-Velasco, Alicia, (2021)
-
Machine learning and deep learning-based students’ grade prediction
Korchi, Adil, (2023)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
- More ...
-
Heinbach, Benjamin, (2024)
-
gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems
Heinbach, Benjamin, (2024)
-
A Federated Machine Learning Approach for Order-Level Risk Prediction in Supply Chain Financing
Kong, Lingxuan, (2023)
- More ...