Oil futures volatility predictability : new evidence based on machine learning models
| Year of publication: |
[2022]
|
|---|---|
| Authors: | Lu, Xinjie ; Ma, Feng ; Xu, Jin ; Zhang, Zehui |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Machine learning | Combination forecast | Realized volatility | Oil futures market | Crisis periods | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Rohstoffderivat | Commodity derivative | Prognose | Forecast |
| Extent: | 1 Online-Ressource (ca. 52 Seiten) Illustrationen |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 10, 2022 erstellt |
| Other identifiers: | 10.2139/ssrn.4031147 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Oil futures volatility predictability : new evidence based on machine learning models
Lu, Xinjie, (2022)
-
Forecasting realized volatility of crude oil futures prices based on machine learning
Luo, Jiawen, (2024)
-
Ampountolas, Apostolos, (2024)
- More ...
-
Oil futures volatility predictability : new evidence based on machine learning models
Lu, Xinjie, (2022)
-
Wang, Jiqian, (2020)
-
Singlehanded or joint race? : stock market volatility prediction
Lu, Xinjie, (2022)
- More ...