On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems
In this paper, we extend the notions of <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$(\Phi ,\rho )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">Φ</mi> <mo>,</mo> <mi mathvariant="italic">ρ</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>-invexity and generalized <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$(\Phi ,\rho )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">Φ</mi> <mo>,</mo> <mi mathvariant="italic">ρ</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>-invexity to the continuous case and we use these concepts to establish sufficient optimality conditions for the considered class of nonconvex multiobjective variational control problems. Further, multiobjective variational control mixed dual problem is given for the considered multiobjective variational control problem and several mixed duality results are established under <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$(\Phi ,\rho )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">Φ</mi> <mo>,</mo> <mi mathvariant="italic">ρ</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>-invexity. Copyright The Author(s) 2014
Year of publication: |
2014
|
---|---|
Authors: | Antczak, Tadeusz |
Published in: |
Journal of Global Optimization. - Springer. - Vol. 59.2014, 4, p. 757-785
|
Publisher: |
Springer |
Saved in:
Saved in favorites
Similar items by person
-
Exact penalty functions method for mathematical programming problems involving invex functions
Antczak, Tadeusz, (2009)
-
Antczak, Tadeusz, (2021)
-
Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions
Antczak, Tadeusz, (2023)
- More ...