On Games of Perfect Information: Equilibria, E-Equilibria and Approximation by Simple Games
We show that every bounded, continuous at infinity game of perfect information has an "!perfect equilibrium. Our method consists of approximating the payoff function of each player by a sequence of simple functions, and to consider the corresponding sequence of games, each differing form the original game only on the payoff function. In addition, this approach yields a new characterization of perfect equilibria: a strategy f is a perfect equilibrium in such a game G if and only if it is an 1=n!perfect equilibrium in Gn for all n, where fGng stand for our approximation sequence.