On noncooperative games, minimax theorems and equilibrium problems
In this chapter we give an overview on the theory of noncooperative games. In the first part we consider in detail for zero-sum (and constant-sum) noncooperative games under which necessary and sufficient conditions on the payoff function and different (extended) strategy sets for both players an equilibrium saddlepoint exists. This is done by using the most elementary proofs. One proof uses the separation result for disjoint convex sets, while the other proof uses linear programming duality and some elementary properties of compact sets. Also, for the most famous saddlepoint result given by Sion's minmax theorem an elementary proof using only the definition of connectedness is given. In the final part we consider n-person nonzero-sum noncooperative games and show by a simple application of the KKM lemma that a so-called Nash equilibrium point exists for compact strategy sets and concavity conditions on the payoff functions.
Year of publication: |
2006-05-11
|
---|---|
Authors: | Frenk, Frenk, J.B.G. ; Kassay, G. |
Institutions: | Faculteit der Economische Wetenschappen, Erasmus Universiteit Rotterdam |
Saved in:
freely available
Extent: | application/pdf |
---|---|
Series: | Econometric Institute Research Papers. - ISSN 1566-7294. |
Type of publication: | Book / Working Paper |
Notes: | The text is part of a series RePEc:ems:eureir Number EI 2006-21 |
Source: |
Persistent link: https://www.econbiz.de/10010731746
Saved in favorites
Similar items by person
-
On Classes of Generalized Convex Functions, Farkas-Type Theorems and Lagrangian Duality
Frenk, Frenk, J.B.G., (1997)
-
Introduction to Convex and Quasiconvex Analysis
Frenk, Frenk, J.B.G., (2001)
-
The Level Set Method Of Joó And Its Use In Minimax Theory
Frenk, Frenk, J.B.G., (2004)
- More ...