On the computational complexity of MCMC-based estimators in large samples
<p>In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace-Bernstein-Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using this observation, we establish polynomial bounds on the computational complexity of general Metropolis random walks methods in large samples. Our analysis covers cases, where the underlying log-likelihood or extremum criterion function is possibly nonconcave, discontinuous, and of increasing dimension. However, the central limit theorem restricts the deviations from continuity and log-concavity of the log-likelihood or extremum criterion function in a very specific manner.
Year of publication: |
2007-05
|
---|---|
Authors: | Belloni, Alexandre ; Chernozhukov, Victor |
Institutions: | Centre for Microdata Methods and Practice (CEMMAP) |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Pivotal estimation via square-root lasso in nonparametric regression
Belloni, Alexandre, (2013)
-
Inference on treatment effects after selection amongst high-dimensional controls
Belloni, Alexandre, (2013)
-
Program evaluation with high-dimensional data
Belloni, Alexandre, (2013)
- More ...