On the observed-data deviance information criterion for volatility modeling
| Year of publication: |
2016
|
|---|---|
| Authors: | Chan, Joshua ; Grant, Angelia L. |
| Published in: |
Journal of financial econometrics : official journal of the Society for Financial Econometrics. - Oxford : Univ. Press, ISSN 1479-8409, ZDB-ID 2160581-6. - Vol. 14.2016, 4, p. 772-802
|
| Subject: | Bayesian model comparison | nonlinear state space | DIC | jumps | moving average | leverage | heavy tails | S&P 500 | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Zustandsraummodell | State space model | Nichtlineare Regression | Nonlinear regression | Schätzung | Estimation | Monte-Carlo-Simulation | Monte Carlo simulation | Theorie | Theory | Börsenkurs | Share price | Kapitalmarktrendite | Capital market returns | Stochastischer Prozess | Stochastic process |
-
Issues in comparing stochastic volatility models using the deviance information criterion
Chan, Joshua, (2014)
-
Inference on self-exciting jumps in prices and volatility using high-frequency measures
Maneesoonthorn, Worapree, (2017)
-
Inference on self-exciting jumps in prices and volatility using high frequency measures
Maneesoonthorn, Worapree, (2014)
- More ...
-
Reconciling output gaps : unobserved components model and Hodrick-Prescott filter
Grant, Angelia L., (2017)
-
A Bayesian model comparison for trend-cycle decompositions of output
Grant, Angelia L., (2017)
-
Measuring the output gap using stochastic model specification search
Chan, Joshua, (2017)
- More ...