Optimal sufficient dimension reduction for the conditional mean in multivariate regression
The aim of this article is to develop optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression. The context is roughly the same as that of a related method by Cook & Setodji (2003), but the new method has several advantages. It is asymptotically optimal in the sense described herein and its test statistic for dimension always has a chi-squared distribution asymptotically under the null hypothesis. Additionally, the optimal method allows tests of predictor effects. A comparison of the two methods is provided. Copyright 2007, Oxford University Press.
Year of publication: |
2007
|
---|---|
Authors: | Yoo, Jae Keun ; Cook, R. Dennis |
Published in: |
Biometrika. - Biometrika Trust, ISSN 0006-3444. - Vol. 94.2007, 1, p. 231-242
|
Publisher: |
Biometrika Trust |
Saved in:
Saved in favorites
Similar items by person
-
Response dimension reduction for the conditional mean in multivariate regression
Yoo, Jae Keun, (2008)
-
A theoretical note on optimal sufficient dimension reduction with singularity
Yoo, Jae Keun, (2015)
-
Modeling the random effects covariance matrix for generalized linear mixed models
Lee, Keunbaik, (2012)
- More ...