Optimised hybrid CNN bi-LSTM model for stock price forecasting
Year of publication: |
2024
|
---|---|
Authors: | Patnaik, Deepti ; Rao, N. V. Jagannadha ; Padhiari, Brajabandhu ; Patnaik, Srikanta |
Published in: |
International journal of intelligent enterprise. - Gen`eve : Inderscience, ISSN 1745-3240, ZDB-ID 2453805-X. - Vol. 11.2024, 3, p. 248-273
|
Subject: | bidirectional long short-term memory | convolutional neural network | evolutionary computation | forecasting | hybrid model | LSTM | MAE | RMSE | SAMPE Jaya algorithm | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Börsenkurs | Share price | Theorie | Theory | Evolutionärer Algorithmus | Evolutionary algorithm | Algorithmus | Algorithm | Prognose | Forecast | Mathematische Optimierung | Mathematical programming |
-
Optimised hybrid CNN-LSTM model for stock price prediction
Patnaik, Deepti, (2024)
-
Extreme learning with chemical reaction optimization for stock volatility prediction
Nayak, Sarat, (2020)
-
Das, Subhranginee, (2022)
- More ...
-
Optimised hybrid CNN-LSTM model for stock price prediction
Patnaik, Deepti, (2024)
-
Yang, Wenli, (2018)
-
Design and Implementation of Multi-Agent Online Auction Systems in Cloud Computing
Yu, Hongyan, (2017)
- More ...