Optimizing control of waste incineration plants using reinforcement learning and digital twins
Year of publication: |
2024
|
---|---|
Authors: | Schlappa, Martin ; Hegemann, Jonas ; Spinler, Stefan |
Published in: |
IEEE transactions on engineering management : EM ; a publication of the IEEE Engineering Management Society. - New York, NY : IEEE, ISSN 1558-0040, ZDB-ID 2021741-9. - Vol. 71.2024, p. 3076-3087
|
Subject: | Combustion optimization | data-drivensimulation | deep reinforcement learning | digital twin | optimalcontrol | power plants | waste incineration nonlinear optimization | Theorie | Theory | Lernprozess | Learning process | Abfallentsorgung | Waste disposal | Digitalisierung | Digitization | Lernen | Learning | Mathematische Optimierung | Mathematical programming |
-
A deep reinforcement learning hyperheuristic for the covering tour problem with varying coverage
Torabi, Parisa, (2025)
-
Lenovo schedules laptop manufacturing using deep reinforcement learning
Liang, Yi, (2022)
-
Kallestad, Jakob, (2023)
- More ...
-
Schlappa, Martin, (2009)
-
Capacity reservation for capital-intensive technologies : an options approach
Spinler, Stefan, (2003)
-
Die Auswirkungen der gegenwärtigen Krise auf die Logistik
Spinler, Stefan, (2010)
- More ...