ORLM : a customizable framework in training large models for automated optimization modeling
| Year of publication: |
2025
|
|---|---|
| Authors: | Huang, Chenyu ; Tang, Zhengyang ; Hu, Shixi ; Jiang, Ruoqing ; Zheng, Xin ; Ge, Dongdong ; Wang, Benyou ; Wang, Zizhuo |
| Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 73.2025, 6, p. 2986-3009
|
| Subject: | large language model | Machine Learning and Data Science | automated optimization modeling | synthetic data | Künstliche Intelligenz | Artificial intelligence | Mathematische Optimierung | Mathematical programming | Automatisierung | Automation |
-
Generative AI and its transformative value for digital platforms
Wessel, Michael, (2025)
-
Hyperparameter optimization for Large Language Model instruction-tuning
Tribes, Christophe, (2024)
-
Evolutionary optimisation of large-scale activity clustering with increased automation
Beer, Dirk J. de, (2022)
- More ...
-
Bayesian dynamic learning and pricing with strategic customers
Chen, Xi, (2022)
-
A note on appointment scheduling with piecewise linear cost functions
Ge, Dongdong, (2014)
-
Price interpretability of prediction markets : a convergence analysis
Gao, Jianjun, (2025)
- More ...