Parameter estimation for ARMA processes with errors in models
The data [bumpy equals]yn[bumpy equals] are fit by the ARMA process with possible model errors [bumpy equals][var epsilon]n[bumpy equals]:A(z) yn = C(z)wn + [var epsilon]n where [bumpy equals]wn, n[bumpy equals] is a martingale difference sequence. The recursive ELS algorithm is used to estimate unknown coefficients of A(z) and C(z). It is shown that the convergence rate of the estimate is and hence the estimate is strongly consistent if [summation operator]ni=0 ||[var epsilon]i||2 = o(n).
Year of publication: |
1994
|
---|---|
Authors: | Chen, Han-Fu ; Deniau, Claude |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 20.1994, 2, p. 91-99
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
Représentations graphiques et décompositions matricielles
Deniau, Claude, (1976)
-
Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds
Chen, Han-Fu, (1987)
-
Blind Channel Identification Based on Noisy Observation by Stochastic Approximation Method
Fang, Hai-Tao, (2003)
- More ...