Parameter estimation for stochastic diffusion process with drift proportional to Weibull density function
Hammou El-otmany, M'hamed Eddahbi Facult{\'e} des Sciences et Techniques Marrakech-Maroc Laboratoire de m{\'e}thodes stochastiques appliqu{\'e}e a la finance et actuariat (LaMsaFA) Abstract. In the present paper we propose a new stochastic diffusion process with drift proportional to the Weibull density function defined as X $\epsilon$ = x, dX t = $\gamma$ t (1 -- t $\gamma$+1) -- t $\gamma$ X t dt + $\sigma$X t dB t , t \textgreater{} 0, with parameters $\gamma$ \textgreater{} 0 and $\sigma$ \textgreater{} 0, where B is a standard Brownian motion and t = $\epsilon$ is a time proche to zero. First we interested to probabilistic solution of this process as the explicit expression of this process. By using the maximum likelihood method and by considering a discrete sampling of the sample of the new process we estimate the parameters $\gamma$ and $\sigma$.
Year of publication: |
2015-02
|
---|---|
Authors: | Elotmany, Hammou ; M'Hamed Eddahbi |
Institutions: | arXiv.org |
Saved in:
Saved in favorites
Similar items by person
-
Chaotic Expansion and Smoothness of Some Functionals of the Fractional Brownian Motion
Eddahbi, M'hamed, (2018)
-
Long memory in electricity prices return and volatility : evidence from OMEL and OMIP markets
Lotfi, Issam, (2014)
-
Computation of Greeks for jump-diffusion models
Eddahbi, M'hamed, (2015)
- More ...