Parameter Estimation with Exact Distribution for Multidimensional Ornstein-Uhlenbeck Processes
It is shown that the suitably normalized maximum likelihood estimators of some parameters of multidimensional Ornstein-Uhlenbeck processes with coefficient matrix of a special structure have exactly a normal distribution. This result provides a generalization to an arbitrary dimension of the well-known behavior of the estimator of the period of a complex AR(1) process.
Year of publication: |
1996
|
---|---|
Authors: | Pap, Gyula ; Zuijlen, Martien C. A. van |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 59.1996, 2, p. 153-165
|
Publisher: |
Elsevier |
Subject: | multidimensional Ornstein-Uhlenbeck processes Radon-Nikodym derivative |
Saved in:
Saved in favorites
Similar items by person
-
Asymptotic inference for nearly unstable AR(p) processes
Meer, Tjacco van der, (1999)
-
Asymptotic inference for a nearly unstable sequence of stationary spatial AR models
Baran, Sándor, (2004)
-
Einmahl, John H. J., (1992)
- More ...