Parametric estimation of a bivariate stable Lévy process
We propose a parametric model for a bivariate stable Lévy process based on a Lévy copula as a dependence model. We estimate the parameters of the full bivariate model by maximum likelihood estimation. As an observation scheme we assume that we observe all jumps larger than some [epsilon]>0 and base our statistical analysis on the resulting compound Poisson process. We derive the Fisher information matrix and prove asymptotic normality of all estimates when the truncation point [epsilon]-->0. A simulation study investigates the loss of efficiency because of the truncation.
Year of publication: |
2011
|
---|---|
Authors: | Esmaeili, Habib ; Klüppelberg, Claudia |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 102.2011, 5, p. 918-930
|
Publisher: |
Elsevier |
Keywords: | Levy copula Maximum likelihood estimation Dependence structure Fisher information matrix Multivariate stable process Parameter estimation |
Saved in:
Saved in favorites
Similar items by person
-
TWO-STEP ESTIMATION OF A MULTI-VARIATE LÉVY PROCESS
Esmaeili, Habib, (2013)
-
Parameter estimation of a bivariate compound Poisson process
Esmaeili, Habib, (2010)
-
Parameter estimation of a bivariate compound Poisson process
Esmaeili, Habib, (2010)
- More ...