Particle learning for Bayesian semi-parametric stochastic volatility model
| Year of publication: |
2019
|
|---|---|
| Authors: | Virbickaitė, Audronė ; Lopes, Hedibert Freitas ; Ausín, M. Concepción ; Galeano, Pedro |
| Published in: |
Econometric reviews. - Philadelphia, Pa. : Taylor & Francis, ISSN 1532-4168, ZDB-ID 2041746-9. - Vol. 38.2019, 9, p. 1007-1023
|
| Subject: | Bayes factor | Dirichlet Process Mixture | MCMC | Sequential Monte Carlo | Bayes-Statistik | Bayesian inference | Monte-Carlo-Simulation | Monte Carlo simulation | Theorie | Theory | Volatilität | Volatility | Markov-Kette | Markov chain | Stochastischer Prozess | Stochastic process | Nichtparametrisches Verfahren | Nonparametric statistics |
-
Bayesian semiparametric multivariate stochastic volatility with application
Zaharieva, Martina Danielova, (2020)
-
Sequential Bayesian analysis for semiparametric stochastic volatility model with applications
Wang, Nianling, (2023)
-
Flexible modeling of dependence in volatility processes
Kalli, Maria, (2015)
- More ...
-
Virbickaitė, Audronė, (2020)
-
Multivariate dynamic mixed-frequency density pooling for financial forecasting
Virbickaitė, Audronė, (2025)
-
Parallel Bayesian inference for high-dimensional dynamic factor copulas
Nguyen, Hoang, (2019)
- More ...