Performance of a novel machine learning-based proxy means test in comparison to other methods for targeting pro-poor water subsidies in Ghana
| Year of publication: |
2022
|
|---|---|
| Authors: | Poulin, Chloé ; Trimmer, John ; Press-Williams, Jessica ; Yachori, Bashiru ; Khush, Ranjiv ; Peletz, Rachel ; Delaire, Caroline |
| Published in: |
Development engineering. - Amsterdam : Elsevier, ISSN 2352-7285, ZDB-ID 2858951-8. - Vol. 7.2022, Art.-No. 100098, p. 1-14
|
| Subject: | Community-based targeting | Machine learning | Poverty | Proxy means test | WASH | Water subsidies | Ghana | Armut | Armutsbekämpfung | Poverty reduction | Künstliche Intelligenz | Artificial intelligence | Subvention | Subsidy | Wasserversorgung | Water supply | Wirkungsanalyse | Impact assessment |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.1016/j.deveng.2022.100098 [DOI] hdl:10419/299113 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Poulin, Chloé, (2022)
-
Probing the limits of mobile phone metadata for poverty prediction and impact evaluation
Barriga Cabanillas, Oscar, (2025)
-
Aiken, Emily, (2025)
- More ...
-
Poulin, Chloé, (2022)
-
Poulin, Chloe, (2022)
-
Acey, Charisma, (2019)
- More ...