Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Year of publication: |
2020
|
---|---|
Authors: | Fehrle, Daniel ; Heiberger, Christopher ; Huber, Johannes |
Publisher: |
Augsburg : Universität Augsburg, Institut für Volkswirtschaftslehre |
Subject: | Polynomial Chaos Expansion | parameter inference | parameter uncertainty | solution methods |
Series: | |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 1747634220 [GVK] hdl:10419/262018 [Handle] RePEc:aug:augsbe:0341 [RePEc] |
Classification: | C11 - Bayesian Analysis ; C13 - Estimation ; C32 - Time-Series Models ; C63 - Computational Techniques |
Source: |
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion : efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion : efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
- More ...
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion : efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion : efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
- More ...