Predictability for Privacy in Data Driven Government
Year of publication: |
2019
|
---|---|
Authors: | Blanke, Jordan "Jody" |
Other Persons: | Hiller, Janine S. (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Datenschutz | Data protection |
Extent: | 1 Online-Ressource (32 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: 20 Minn. J.L. Sci. & Tech. (2018) Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 28, 2018 erstellt |
Classification: | K2 - Regulation and Business Law ; K29 - Regulation and Business Law. Other ; O33 - Technological Change: Choices and Consequences; Diffusion Processes ; O38 - Government Policy |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predictions and Privacy : Should There Be Rules About Using Personal Data to Forecast the Future?
MATSUMI, Hideyuki, (2021)
-
Privacy Attitudes, Incentives and Behaviours
Brown, Ian, (2011)
-
Menaldo, Nicola, (2014)
- More ...
-
A framework for e‐government: privacy implications
Belanger, France, (2006)
-
The Firm and Common Pool Resource Theory: Understanding the Rise of Benefit Corporations
Hiller, Janine S., (2018)
-
Competitiveness Through Management of Diversity: Effects on Stock Price Valuation
Wright, Peter, (1995)
- More ...