Predicting accounting fraud using imbalanced ensemble learning classifiers : evidence from China
| Year of publication: |
2023
|
|---|---|
| Authors: | Rahman, Md Jahidur ; Zhu, Hongtao |
| Published in: |
Accounting and finance. - Melbourne : Wiley-Blackwell, ISSN 1467-629X, ZDB-ID 1482438-3. - Vol. 63.2023, 3, p. 3455-3486
|
| Subject: | Accounting fraud detection | Artificial intelligence | China A-share | CUSBoost | Ensemble learning algorithms | Machine learning | RUSBoost | Künstliche Intelligenz | China | Bilanzdelikt | Accounting fraud | Algorithmus | Algorithm | Betrug | Fraud | Lernprozess | Learning process | Neuronale Netze | Neural networks | Rechnungswesen | Accounting |
-
Detecting accounting fraud in family firms : evidence from machine learning approaches
Rahman, Md Jahidur, (2024)
-
Detecting financial statement fraud using dynamic ensemble machine learning
Achakzai, Muhammad Atif Khan, (2023)
-
Using interpretable machine learning for accounting fraud detection : a multi-user perspective
Lösse, Leonhard J., (2023)
- More ...
-
Corporate social responsibility in times of social distancing : evidence from China
Rahman, Md Jahidur, (2025)
-
Rahman, Md Jahidur, (2023)
-
Auditor choice and audit fees through the lens of agency theory : evidence from Chinese family firms
Rahman, Md Jahidur, (2023)
- More ...