Predicting bank insolvencies using machine learning techniques
Year of publication: |
2020
|
---|---|
Authors: | Petropoulos, Anastasios ; Siakoulis, Vasilis ; Stavroulakis, Evangelos ; Vlachogiannakis, Nikolaos E. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 36.2020, 3, p. 1092-1113
|
Subject: | Bank's insolvencies | Forecasting | Random Forests | Support Vector Machines | Neural Networks | Conditional inference trees | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Bankinsolvenz | Bank failure | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | Insolvenz | Insolvency | Theorie | Theory | Kreditwürdigkeit | Credit rating |
-
Le, Hong Hanh, (2018)
-
Zhao, Dong, (2017)
-
Horák, Jakub, (2020)
- More ...
-
Petropoulos, Anastasios, (2023)
-
Towards an early warning system for sovereign defaults leveraging on machine learning methodologies
Petropoulos, Anastasios, (2022)
-
Forecasting private sector bank deposits in Greece : determinants for trend and shock effects
Petropoulos, Anastasios, (2018)
- More ...