Predicting corporate bond illiquidity via machine learning
Year of publication: |
2024
|
---|---|
Authors: | Cabrol, Axel ; Drobetz, Wolfgang ; Otto, Tizian ; Puhan, Tatjana-Xenia |
Published in: |
Financial analysts journal : FAJ. - [Abingdon] : Routledge, Taylor and Francis Group, ISSN 1938-3312, ZDB-ID 2066328-6. - Vol. 80.2024, 3, p. 103-127
|
Subject: | bond illiquidity | corporate bonds | illiquidity forecasting | machine learning | quantitative credit research | Unternehmensanleihe | Corporate bond | Künstliche Intelligenz | Artificial intelligence | Liquidität | Liquidity | Prognoseverfahren | Forecasting model | Marktliquidität | Market liquidity | Anleihe | Bond | Kreditrisiko | Credit risk | Finanzanalyse | Financial analysis | Theorie | Theory |
-
Bond defaults in China : using machine learning to make predictions
Cui, Bei, (2025)
-
Commonality in liquidity in the US corporate bond market
Bethke, Sebastian, (2016)
-
Permanent trading impacts and bond yields
Dufour, Alfonso, (2012)
- More ...
-
Predicting Corporate Bond Illiquidity via Machine Learning
Cabrol, Axel, (2023)
-
Empirical asset pricing via machine learning: evidence from the European stock market
Drobetz, Wolfgang, (2021)
-
Forecasting Stock Market Crashes via Machine Learning
Dichtl, Hubert, (2021)
- More ...