Predicting distresses using deep learning of text segments in annual reports
Year of publication: |
15 November 2018
|
---|---|
Authors: | Hansen, Caspar ; Hansen, Christian ; Matin, Rastin ; Mølgaard, Pia |
Publisher: |
Copenhagen : Danmarks Nationalbank |
Subject: | Credit risk | Risk management | Kreditrisiko | Risikomanagement | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Insolvenz | Insolvency |
Extent: | 1 Online-Ressource (circa 25 Seiten) Illustrationen |
---|---|
Series: | Working paper / Danmarks Nationalbank ; no. 130 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature |
Language: | English |
Notes: | Zusammenfassung in dänischer Sprache |
Other identifiers: | hdl:10419/202870 [Handle] |
Classification: | C45 - Neural Networks and Related Topics ; c55 ; G17 - Financial Forecasting ; G33 - Bankruptcy; Liquidation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Can machine learning models capture correlations in corporate distresses?
Christoffersen, Benjamin, (2018)
-
A deep learning approach to estimate forward default intensities
Divernois, Marc-Aurèle, (2020)
-
Impact of Mortgage Soft Information in Loan Pricing on Default Prediction using Machine Learning
Luong, Mai, (2022)
- More ...
-
Predicting distresses using deep learning of text segments in annual reports
Hansen, Caspar, (2018)
-
Can machine learning models capture correlations in corporate distresses?
Christoffersen, Benjamin, (2018)
-
Can Machine Learning Models Capture Correlations in Corporate Distresses?
Christoffersen, Benjamin, (2019)
- More ...